728x90
- tf.transpose(a)
x = tf.constant([[1, 2, 3], [4, 5, 6]]) x2 = tf.transpose(x) with tf.Session() as sess: print(sess.run(x)) print(sess.run(x2)) [[1, 2, 3], [4, 5, 6]] [[1 4] [2 5] [3 6]]
- torch.transpose(input, dim0, dim1)
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
torch.transpose(x, 0, 1)
tensor([[1, 2, 3],
[4, 5, 6]])
tensor([[1, 4],
[2, 5],
[3, 6]])
dim0과 dim1을 swap한다.
- Loss function
# mean squared error
tf.losses.mean_squared_error(y_true, y_pred)
criterion = nn.MSELoss()
criterion(y_pred, y_true)
# binary class cross entropy
tf.losses.sigmoid_cross_entropy(labels, logits) # one-hot encoding 필요
criterion = nn.BCELoss()
criterion(nn.Sigmoid(input), y_true) # one-hot encoding 불 필요
# multi class softmax cross entropy
tf.losses.softmax_cross_entropy(labels, logits) # one-hot encoding 필요
criterion = nn.CrossEntropyLoss()
criterion(y_pred, y_true) # one-hot encoding 불 필요
# multi label이 불가능하고 one-hot이 아닌 label의 값을 표현
# 추천시스템에서 많이 사용
tf.losses.sparse_softmax_cross_entropy(labels, logits) # one-hot encoding 불 필요
- optimzer
'Adagrad': tf.train.AdagradOptimizer,
'Adam': tf.train.AdamOptimizer,
'RMSProp': tf.train.RMSPropOptimizer,
'SGD': tf.train.GradientDescentOptimizer
'Adagrad': torch.optim.Adagrad
'Adam': torch.optim.Adam
'RMSProp': torch.optim.RMSProp
'SGD': torch.optim.SGD
- save
saver = tf.train.Saver()
saver.save(sess, "chekpoint_path", global_step=step)
torch.save("model_name".state_dict(), 'params.ckpt')
- load
saver = tf.train.import_meta_graph("model.meta")
saver.restore(sess, tf.train.latest_checkpoint("model_save_path")
"model_name".load_state_dict(torch.load("model.ckpt"))
728x90
'Tensorflow' 카테고리의 다른 글
Tensorflow vs Pytorch 명령어 비교 -(6) (0) | 2021.06.03 |
---|---|
Tensorflow vs Pytorch 명령어 비교 -(5) (0) | 2021.06.02 |
Tensorflow vs Pytorch 명령어 비교 - (3) (0) | 2021.05.17 |
Tensorflow vs Pytorch 명령어 비교 - (2) (0) | 2021.05.15 |
Tensorflow vs Pytorch 명령어 비교 (0) | 2021.05.14 |
댓글